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The use of the Boltzmann kinetic equation provides a number of potential technical advantages in the
analysis of subgrid scale fluid turbulence as compared to the Navier-Stokes hydrodynamic representation. The
only nonlinearity in the Bhatnagar-Gross-Krook kinetic formalism occurs implicitly in the collision operator
and is purely algebraic in forrfeven in real spageSince under Chapman-Enskog expansions one recovers the
fluid equations, the alternative approach presented here should have straightforward applications to subgrid
modeling of compressible turbulence and other more complex fliE1€063-651X99)50803-9

PACS numbgs): 47.27.Gs, 51.16:y, 64.60.Ak

Modern formulations of turbulence theory are based on C[f]=—w(f—0), 2
field-theoretic method$1,2]. A variant of this is the ap-
proach to fluid turbulencg€3—5] based on the renormaliza- where parametetv is an inverse characteristic relaxation
tion group(RG) method[6,7]. The idea is to explore scale time andg is a local equilibrium distribution with a Max-
symmetries via recursive elimination of small scales in favomwellian form,
of the large scales and performing scale transformatfi8hs
Such a procedure leads to a solution for the subgrid scale p
dynamics in the form of eddy dissipation. The advantage of 9= (277—1')"’2
this approach is that the local Reynolds number based on

renormalized eddy viscosity can become sufficiently small tqyhered is the dimension of the momentum space. It is seen
justify the use of perturbation theof9—13|. The fundamen-  that g is completely determined by the local hydrodynamic

tal correctness of the RG-method remains controversial whegyantitiesp, T, andu. Combination of Egs(1) and(2) gives
applied to the Navier-Stokes equatidid]. Here we suggest  the known BGK kinetic equation

applying the RG method at a step higher in the moment

exd — (v—u)?/2T], ©)

closure hierarchy. of+v-Vi=—w(f—g). 4
We begin by considering the Boltzmann equation of ki-
netic theory, This equation is to all effects superseof the Navier-Stokes
equations, in the sense that the dynamics of its lower mo-
— [fqd - d ; ;
af+v-Vi=C[f], 1) mentsp=[fd%, pu=[fvd“ admits the Navier-Stokes

equations in the hydrodynamic limit, defined under the
Knudsen numbeK = y¢,/L<1, wherel ,,;,~\T/ o is the
wheref(x,v,t) is the probability of finding a particle iR at  molecular mean free path ardis a typical scale of macro-
time t with velocity v. The left-hand side represents free scopic interest. It is also worthwhile to point out that the
streaming in phase space whereas the right-hand side colle®%K equation given by Eq4) is no longer restricted only to
the effects of interparticle collisions. Obviously, Boltzmann low density situation as opposed to the original Boltzmann
equation possesses symmetry between space and time, asguation. Since all hydrodynamic properties are contained in
yet has a well defined direction of evolution indicated by anthe BGK kinetic equation(4), theoretical analysis can be
H theorem. For realistic interactions, the collision term isperformed based on this alternative first principle description
expressed by a very complicated integral operfidt. The  in place of the Navier-Stokes equations. At a first glance, this
crucial point is that to all hydrodynamic purposes, includingseems only to trouble ourselves with a lot of unwanted, re-
turbulence, the realistic form of the collision operaton@  dundant information from velocity space. In the recent years,
needed, simply because most details hidde@[ifi] play no  mainly under the impact of lattice gas and lattice Boltzmann
role at the hydrodynamic level. One can therefore replaceesearch, we have learned that BGK kinetic equations are
C[f] with much handier expressions retaining only the ba-amenable to simple manipulations that permit one to do
sics of fluid physics. Perhaps, the simplest such model is thaway with most complexities of velocity space, including
so-called Bhatnagar-Gross-KrogBGK) relaxation operator multiphase and complex boundary conditions, without cor-
[16], rupting the hydrodynamic content of the thedri/7—20.
Boltzmann BGK given by Eq4) achieves the desired sym-
metry between space and time derivativegperbolic form
* Affiliated with the Physics Department, Rome University “La as opposed to mixed parabolic-hyperbolic character of the
Sapienza,” Roma, Italy. Navier-Stokes equatiopsand its streaming operator is lin-
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ear, which facilitates the analysis in Fourier space. Further- ~ veu o (veu)? u?

more, the nonlinearity, hidden implicitly in the local Max- g~g=fy| 1+ —+ > " o7 | (6)
wellian g is entirely local in configuration space, which is 2T 2T

another desirable technical feature. It is worth mentioning{N

that a hyperbolic formulation of Navier-Stokes dynamics can here

be achieved by introducing rather complicated adjoint fields

so as tq cogple a dissipative system with;gpeirsymmetric fo= p exd —Vv2/2T].

antidissipative on¢21]. The elegant quasilinear form of the (27T)92

BGK equation provides all this in a fairly simple and natural

way. This is because the aforementioned supersymmetry iBhis is perfectly sensible as long as we restrict our attention
just built-in in kinetic space since backward moving particlesto weakly compressible flows. Next, though arguably the ad-
obey the adjoint version of the BGK equation for forward vantage lies more in configuration space, in order to make an
moving particles. Of course, at some stage the hyperbolidmmediate comparison with existing works, we proceed with
symmetric form of BGK has to be broken in order to de-our subgrid analysis of the BGK equation in Fourier space,
scribe a dissipative system such as turbulent flows. This ~

symmetry breaking takes place precisely at the point where Sf=—-w(f-0), (7

the low Knudsen assumption translates into a statement of ) ] ]

adiabatic relaxation of thédeviatoric component dfthe  WhereS=d,+ik-v is a shorthand for the streaming operator

momentum-flux tensor andg is the expanded local equilibrium expressed in Fourier
representation. Here=f(k,v,t) is the Fourier transform of
the distribution function, which describes the probability
Pij:J' foiv;d% (5)  density of finding a particle distribution at scatehaving

velocity valuev at timet. It can be directly shown that the
incompressible Navier-Stokes in Fourier-space results from
Eqg. (7) via the standard Chapman-Enskog proced@@,
together with the following explicit equilibrium form,

~ v-u(k)
g:fo[ o(k)+ T(

to its local equilibrium expression

Pﬁq:f gUinddU:pUin+pT5ij .

This leads to the Navier-Stokes equations for a fluid with a G [w
kinematic viscosityp=T/w. Conceptually, the BGK system + {_: <_ _ |)
has an intrinsic ultraviolet cutoff scale;|¢,. That is, all 2T\ T
variations with scales less than this are viewed as thermal )
fluctuations, while hydrodynamic quantities such as fluid veWherep and T are now pure constants, akdu(k)=0 in
locity u is nothing but the center of mass motion of the VIEW o_f the incompressibility constraint. In the aboveis
locally averaged subdomain of linear dimensigg,. From the unit tensor, and
statistical physics point of view, BGK system offers a closer
analogy to a spin system in whicH(x,v) can be conve- pu(k):J' ddvvf(k,v):J ddvva(k,v).
niently compared to the density of spinsxadssociated with
the statev. This comparison is even more revealing for the
lattice Boltzmann models in which the particle velocitys
guantized to a finite discrete set of values. Due to these Kok
mathematical features, it makes sense to explore some sub- Gijui = 861 — &j L, (9)
grid RG-like analysis to turbulence with the alternative ki- 2
netic representation as opposed to that for Navier-Stokes
fluid equations. The resulting large scale dynamics may natdS & consequence of thtotal temperature(or, pressure
rally contain a modified relaxatiom, which subsequently Cchange in response to maintaining incompressibility.
results in generalized transport properties involving eddy vis- AS We know, | ¢,=27/K defines a natural ultraviolet
cosity and hyperviscosities, or even the equation of statgutoff in wave number space, which can be set to be compa-
modifications. Furthermore, this alternative approach for turfable to the Kolmogorov dissipation scale. Following the RG
bulent fluid may provide a bridge over to the extensive fieldProcedure, we can split the distribution functidinto resolv-
of knowledge in the statistical transport theory for many-able (slow) and subgrid(fasy components respectivel
body system$22]. =f_+f., where f_=f(k,v;|k|<Ks) and f-=f(k,v;|K|

In what follows, we shall only present the main logical >Ks). The wave numbeK=K/s(s=1) being a new ultra-
steps of the analysis together with some preliminary resultsviolet cutoff in Fourier space. Upon inserting this decompo-
In-depth details and more rigorous treatments will be left tosition into Eq.(7), one obtains two coupled BGK equations
future presentations. To allow simpler manipulations, it isfor the resolvable and subgrid components,
useful to start with the approximation of the Maxwellign _
(an exponential non-linearity though not always undesijable Scfo=—-o(fo—go),
with a second order polynomial expression in the Mach num-
ber, M~u/cg(c2~T), Sofo=—w(f.—g-), (10)

:fdpu(p)u(k—p)], (8)

The fourth-order tensor,
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whereg_=7g, andg-=(1-P)g with P being the projec- The projected equilibrium has the following explicit form:
tor on the resolvable mode space. Manifestly, being a linear_ - L e
streaming operatoi$ does not introduce any coupling. The 9<=fo{ 8(K) +Ajui™ +Bjj (Ui * u;” +2u7*uy +ui *u;)},
resolvable-subgrid coupling is localized to the projected (14)

equilibriag. andg-. . More specifically, where Aj=v;/T, and By =Gy /2T (v /T— 8a), with

~ ~ ~ H <k < : .
—35+ 50 11 Gijii given by Eq.(9). In the abovep; *u; is an abbrevia-
9<79<70< 1 tion for [dpu;™(p)u; (k—p). A similar definition is used for
whereg==g(u~) has the form of Eq(8) but with the argu- the other terms in Eq14). According to Eq.(11), the goal
ment u replaced byu=(=/fd%vf.). While sg-=g=" of our RG procedure is to find at each iteration of the RG
- <J- <7 Y<

~ analysis a sensible subgrid scale averaged expression of
< where<> and > denote the effect on large scale (69.) in terms of the resolvable componeht alone. Due
equilibrium due to contributions from large-small and small-

. . . to Eq. (10), this requires solving the small scale dynamics
small eddy interactions, respectively. The same treatment aRrat is due to the resolvable-subgrid and subgrid-subgrid

pILesbtol th? f‘T’Ung'd quglbglum Ialf well. It 'Sf Ofégn sta.ted thateddy interactions. We now make the conventional assump-
a turbulent flow doegotbenave like a gas of €ddI€s SINCE NO i, "1hat the flow carried by the subgrid componart

et L Sl of el e st et ¥ vt spitsno  hgampltuce zer-averaging co

scale equilibria d.cmot correspond to ar;y local equilibrium as Boneniul plus a low amplltud_e, nonzero averaging compo-

a function of the large-small scale flow velocity field alone nentu==. The former is associated with a background fluc-
'tuation driven by a random forcg3,9], and the latter is

g-(u)#g(u~). If the separation of scales were to exist andcompletely controlled by the regular motion of the large ed-
the contributions from small scales were uncorrelated rangies. Much as in Navier-Stokes analysis, the subgrid aver-

dom thermal-noise like fluctuations only, then the resultingageq properties of these velocity fields are described as fol-
hydrodynamic equation fou™ would be shown to be de- |gys:
scribed by a trivial rescaling of the Navier-Stokes equations.

In fact, because small scale properties do not generally meet (uSy=u~, (u”%=0, (uH=u",

with the above conditions, this rescaling is fairly nontrivial

and there is no proof of such form invariance for Navier- (UZOK)UTO(k")) =Py (K)Q(K) S(k+ k') (15)
i i ij ’

Stokes representatidi22]. On the other hand, though this

remains to be shown mathematically, E@) does offer a whereP;; (k)= 8, — kik /K2 is the projection operator. Using

better chance for being form invariant; a necessary require-h L he definiti ~ dilv ob
ment for a dynamical RG analysis. We can provide here 4 ese properties into the definition 68g-), we readily ob-

heuristic argument based on physical reasons. Supported
a localH theoremg(u~), corresponds to the equilibrium of
a coarse grained subsystéhiock spin in a volume of size

. ~s ~ <> .
~2m/Ks. Hence, we can interpreC andg_"~ as nonequi-  Now we express the subgrid components via their kinetic
librium deviations from such local equilibrium caused by gefinition, as velocity integrals of the small scale distribution
subgrid scale eddies. Moreover, if we argue that” can  function, namelypu” = fd%uv;f , wheref? is by defini-

also be considered @inean nonequilibrium deviation, then tion the departure from the zeroth order subgrid local equi-
we can formally express them, without loss of generality, asibrium,

<5§<>:2fOBij{ui<*<uj>l>+<ui>o* uihy}. (16)

69-=—Aw(f-—g2). (12 92 = fof A O+ By (U U+ 2u* u O+ U7 %% uT0)

Substituting this into Eq.(10), we arrive at the coarse

grained BGK equation Though not necessary in a more systematic derivation, for

the main purpose of this Rapid Communication we only con-
sider the time variations in the subgrid mode that are short
enough, so that we can ignore the time derivative in the

Under these assumptions, the coarse grained BGK equaticiy29rid component equatiorks- v~ — (k-v). We then re-
has the same form as that of the original BGK equation exPlace this k;y Its ensg:mble ?veraged value and invoke isot-
cept with a redefined relaxation parametahich may not ~ OPY: (K-v)*—=((k-v)%)—Tk, then obtain to the leading
necessarily be a simple scalaTherefore, dynamic invari- order a detailed balance relation as the solution for the small
ance at the kinetic level is more plausible. Apparently, suctfc@e BGK,

invariance usually does not and need not translate into a 9el ) ~0

form invariance at the hydrodynamic level. Since the BGK Tk fZ=—iwk-vg:. 17
equation reduces to the Navier-Stokes equations in the low _

Knudsen limit, it is clear that the new relaxation implies a Therefore, we havé>=(1—iwk-v)g§+6f>, where 6f -
modified viscosity at th&—0 limit. However, the hydrody- represents other nonequilibrium fluctuations that do not ac-
namic properties at some intermediate scales can beconeeunt for any hydrodynamic modes. Inserting this expression
more interesting and are likely to involve not just simple into the above velocity moment relation and using properties
eddy-damping effects. (15), we obtain

Sfo=—w(f-—g3). (13
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—iw resents the main result of the present Rapid Communication.
(U7 (k)= ﬁAijk(k)I dpu;(p)u=(k—p). (18)  Note the above expression may involve time integrations if

we had not neglected the time derivative term in the subscale
Similarly, we can compute the second order moment correI—S.GK' A?Q’ n other RG procedures, we can carry on thg analy-
lation sis to eliminate the next wave-number shell. By so doing, the
only change in expressiof20) is to replacev by w.(k
—p). The final result, though obtained via crude assump-
tions, is similar to those given by the RG derivations via
Navier-Stokes representatif®,9,13; particularly, it is iden-
tical (up to a constant factprto that derived by Zhou and
Here, A (k) is the familiar coupling kernel appearing in Vahala[13]. o _
incompressible Navier-Stokes equatiodg; (k) =k;Pi(k) Our Boltzmann BGK-RG analysis builds upon two main
+kP;j; (k) andQ(p) is defined in Eq(15). Plugging these assu_r_nptions(i) the statistical properti_es_ of subgrid sca_les,
expressions in Eq16), we arrive at a closed form fgwg.) ~ and(ii) the low Knudsen closure. Iter) is the same as in
in terms of the resolvable components and averaged powé§otropic Navier-Stokes turbulence. On the contrary, point
spectrum of the subgrid components. The Correspondingi) is peculiar to the present kinetic derivation and it has, we

eddy viscosity is readily evaluated by either computing ex-believe, the advantage of offering potentially new physical
plicitly the contribution of( 5a<> to the momentum flux ten- iNsights as well as alternative mathematical treatments. Nev-

(U (p)uy H(k—p))= Aji(k=p)ug (K) Py (p)Q(P).

(19

w
2Tk?

sor in Eq.(5), or simply by inserting it into the definition of €rtheless, we wish to point out that the low Knudsen assump-
tion is not entirely rigorous, since it might become question-

able in the infrared region where adiabatic enslaving to a
local equilibrium is not quite accurate. More careful deriva-
tions based on systematic expansion methods are certainly
warranted. This leaves room for future work which may
discover additional physics besides the Navier-Stokes
formulation.

the effective relaxatiod w. Either way, the final result reads
Aijk(k)f dp
k? >

wherev=T/w is the molecular viscosity. This yields an ef-
fective viscosity due to scales around the cutffand rep-

Axim(k—
:Lk(— p)g) Pil(P)Pim(K)Q(p),

(20

ve(K)=
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