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Analysis of subgrid scale turbulence using the Boltzmann Bhatnagar-Gross-Krook
kinetic equation
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The use of the Boltzmann kinetic equation provides a number of potential technical advantages in the
analysis of subgrid scale fluid turbulence as compared to the Navier-Stokes hydrodynamic representation. The
only nonlinearity in the Bhatnagar-Gross-Krook kinetic formalism occurs implicitly in the collision operator
and is purely algebraic in form~even in real space!. Since under Chapman-Enskog expansions one recovers the
fluid equations, the alternative approach presented here should have straightforward applications to subgrid
modeling of compressible turbulence and other more complex fluids.@S1063-651X~99!50803-9#

PACS number~s!: 47.27.Gs, 51.10.1y, 64.60.Ak
o

-
e
vo

ca
o
o

l t

he
t
en

ki

e
lle
nn
,
an
is

ng

ac
a
th

n

en
ic

o-

he

-
e

nn
d in
e
ion
this
re-
rs,
nn
are
do
g

or-

-

the
-

a

Modern formulations of turbulence theory are based
field-theoretic methods@1,2#. A variant of this is the ap-
proach to fluid turbulence@3–5# based on the renormaliza
tion group ~RG! method@6,7#. The idea is to explore scal
symmetries via recursive elimination of small scales in fa
of the large scales and performing scale transformations@8#.
Such a procedure leads to a solution for the subgrid s
dynamics in the form of eddy dissipation. The advantage
this approach is that the local Reynolds number based
renormalized eddy viscosity can become sufficiently smal
justify the use of perturbation theory@9–13#. The fundamen-
tal correctness of the RG-method remains controversial w
applied to the Navier-Stokes equations@14#. Here we sugges
applying the RG method at a step higher in the mom
closure hierarchy.

We begin by considering the Boltzmann equation of
netic theory,

] t f 1v•“ f 5C@ f #, ~1!

where f (x,v,t) is the probability of finding a particle inx at
time t with velocity v. The left-hand side represents fre
streaming in phase space whereas the right-hand side co
the effects of interparticle collisions. Obviously, Boltzma
equation possesses symmetry between space and time
yet has a well defined direction of evolution indicated by
H theorem. For realistic interactions, the collision term
expressed by a very complicated integral operator@15#. The
crucial point is that to all hydrodynamic purposes, includi
turbulence, the realistic form of the collision operator isnot
needed, simply because most details hidden inC@ f # play no
role at the hydrodynamic level. One can therefore repl
C@ f # with much handier expressions retaining only the b
sics of fluid physics. Perhaps, the simplest such model is
so-called Bhatnagar-Gross-Krook~BGK! relaxation operator
@16#,
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C@ f #52v~ f 2g!, ~2!

where parameterv is an inverse characteristic relaxatio
time andg is a local equilibrium distribution with a Max-
wellian form,

g5
r

~2pT!d/2
exp@2~v2u!2/2T#, ~3!

whered is the dimension of the momentum space. It is se
that g is completely determined by the local hydrodynam
quantities,r,T, andu. Combination of Eqs.~1! and~2! gives
the known BGK kinetic equation

] t f 1v•“ f 52v~ f 2g!. ~4!

This equation is to all effects asupersetof the Navier-Stokes
equations, in the sense that the dynamics of its lower m
mentsr5* f ddv, ru5* f vddv admits the Navier-Stokes
equations in the hydrodynamic limit, defined under t
Knudsen numberKn5 l m f p /L!1, wherel m f p;AT/v is the
molecular mean free path andL is a typical scale of macro
scopic interest. It is also worthwhile to point out that th
BGK equation given by Eq.~4! is no longer restricted only to
low density situation as opposed to the original Boltzma
equation. Since all hydrodynamic properties are containe
the BGK kinetic equation~4!, theoretical analysis can b
performed based on this alternative first principle descript
in place of the Navier-Stokes equations. At a first glance,
seems only to trouble ourselves with a lot of unwanted,
dundant information from velocity space. In the recent yea
mainly under the impact of lattice gas and lattice Boltzma
research, we have learned that BGK kinetic equations
amenable to simple manipulations that permit one to
away with most complexities of velocity space, includin
multiphase and complex boundary conditions, without c
rupting the hydrodynamic content of the theory@17–20#.
Boltzmann BGK given by Eq.~4! achieves the desired sym
metry between space and time derivatives~hyperbolic form
as opposed to mixed parabolic-hyperbolic character of
Navier-Stokes equations!, and its streaming operator is lin
R2527 ©1999 The American Physical Society
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ear, which facilitates the analysis in Fourier space. Furth
more, the nonlinearity, hidden implicitly in the local Max
wellian g is entirely local in configuration space, which
another desirable technical feature. It is worth mention
that a hyperbolic formulation of Navier-Stokes dynamics c
be achieved by introducing rather complicated adjoint fie
so as to couple a dissipative system with a~super!symmetric
antidissipative one@21#. The elegant quasilinear form of th
BGK equation provides all this in a fairly simple and natu
way. This is because the aforementioned supersymmet
just built-in in kinetic space since backward moving partic
obey the adjoint version of the BGK equation for forwa
moving particles. Of course, at some stage the hyperbo
symmetric form of BGK has to be broken in order to d
scribe a dissipative system such as turbulent flows. T
symmetry breaking takes place precisely at the point wh
the low Knudsen assumption translates into a statemen
adiabatic relaxation of the~deviatoric component of! the
momentum-flux tensor

Pi j 5E f v iv jd
dv ~5!

to its local equilibrium expression

Pi j
eq5E gv iv jd

dv5ruiuj1rTd i j .

This leads to the Navier-Stokes equations for a fluid with
kinematic viscosity,n5T/v. Conceptually, the BGK system
has an intrinsic ultraviolet cutoff scale,; l m f p . That is, all
variations with scales less than this are viewed as ther
fluctuations, while hydrodynamic quantities such as fluid
locity u is nothing but the center of mass motion of t
locally averaged subdomain of linear dimensionl m f p . From
statistical physics point of view, BGK system offers a clos
analogy to a spin system in whichf (x,v) can be conve-
niently compared to the density of spins atx associated with
the statev. This comparison is even more revealing for t
lattice Boltzmann models in which the particle velocityv is
quantized to a finite discrete set of values. Due to th
mathematical features, it makes sense to explore some
grid RG-like analysis to turbulence with the alternative
netic representation as opposed to that for Navier-Sto
fluid equations. The resulting large scale dynamics may n
rally contain a modified relaxationv, which subsequently
results in generalized transport properties involving eddy
cosity and hyperviscosities, or even the equation of s
modifications. Furthermore, this alternative approach for
bulent fluid may provide a bridge over to the extensive fi
of knowledge in the statistical transport theory for man
body systems@22#.

In what follows, we shall only present the main logic
steps of the analysis together with some preliminary resu
In-depth details and more rigorous treatments will be left
future presentations. To allow simpler manipulations, it
useful to start with the approximation of the Maxwelliang
~an exponential non-linearity though not always undesirab!
with a second order polynomial expression in the Mach nu
ber, M;u/cs(cs

2;T),
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g'g̃[ f 0F11
v•u

T
1

~v•u!2

2T2
2

u2

2TG , ~6!

where

f 05
r

~2pT!d/2
exp@2v2/2T#.

This is perfectly sensible as long as we restrict our atten
to weakly compressible flows. Next, though arguably the
vantage lies more in configuration space, in order to make
immediate comparison with existing works, we proceed w
our subgrid analysis of the BGK equation in Fourier spac

Sf 52v~ f 2g̃!, ~7!

whereS[] t1 ik•v is a shorthand for the streaming operat
andg̃ is the expanded local equilibrium expressed in Four
representation. Heref [ f (k,v,t) is the Fourier transform of
the distribution function, which describes the probabil
density of finding a particle distribution at scalek having
velocity valuev at time t. It can be directly shown that the
incompressible Navier-Stokes in Fourier-space results fr
Eq. ~7! via the standard Chapman-Enskog procedure@23#,
together with the following explicit equilibrium form,

g̃5 f 0H d~k!1
v•u~k!

T

1F G

2T
:S vv

T
2I D G :E dpu~p!u~k2p!J , ~8!

wherer and T are now pure constants, andk•u(k)50 in
view of the incompressibility constraint. In the above,I is
the unit tensor, and

ru~k!5E ddvvf ~k,v!5E ddvvg̃~k,v!.

The fourth-order tensor,

Gi jkl 5d ikd j l 2d i j

kkkl

k2
, ~9!

is a consequence of thetotal temperature~or, pressure!
change in response to maintaining incompressibility.

As we know, l m f p[2p/K defines a natural ultraviole
cutoff in wave number space, which can be set to be com
rable to the Kolmogorov dissipation scale. Following the R
procedure, we can split the distribution functionf into resolv-
able ~slow! and subgrid~fast! components respectivelyf
5 f ,1 f . , where f ,[ f (k,v;uku,Ks) and f .[ f (k,v;uku
.Ks). The wave numberKs5K/s(s>1) being a new ultra-
violet cutoff in Fourier space. Upon inserting this decomp
sition into Eq.~7!, one obtains two coupled BGK equation
for the resolvable and subgrid components,

S, f ,52v~ f ,2g̃,!,

S. f .52v~ f .2g̃.!, ~10!
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whereg̃,[Pg̃, andg̃.[(12P)g̃ with P being the projec-
tor on the resolvable mode space. Manifestly, being a lin
streaming operator,S does not introduce any coupling. Th
resolvable-subgrid coupling is localized to the projec
equilibria g̃, and g̃. . More specifically,

g̃,5g̃,
!1dg̃, , ~11!

whereg̃,
![g̃(u,) has the form of Eq.~8! but with the argu-

ment u replaced byu,(5*ddvvf ,). While dg̃,5g̃,
,.

1g̃,
@ where ,. and @ denote the effect on large sca

equilibrium due to contributions from large-small and sma
small eddy interactions, respectively. The same treatmen
plies to the subgrid equilibrium as well. It is often stated th
a turbulent flow doesnot behave like a gas of eddies since
clear cut separation of scales can be established betwee
and slow scales. This is indeed true, in that the large-sm
scale equilibria donot correspond to any local equilibrium a
a function of the large-small scale flow velocity field alon
g̃,(u)Þg̃(u,). If the separation of scales were to exist a
the contributions from small scales were uncorrelated r
dom thermal-noise like fluctuations only, then the result
hydrodynamic equation foru, would be shown to be de
scribed by a trivial rescaling of the Navier-Stokes equatio
In fact, because small scale properties do not generally m
with the above conditions, this rescaling is fairly nontrivi
and there is no proof of such form invariance for Navie
Stokes representation@22#. On the other hand, though th
remains to be shown mathematically, Eq.~7! does offer a
better chance for being form invariant; a necessary requ
ment for a dynamical RG analysis. We can provide her
heuristic argument based on physical reasons. Supporte
a localH theorem,g̃(u,), corresponds to the equilibrium o
a coarse grained subsystem~block spin! in a volume of size
;2p/Ks . Hence, we can interpretg̃,

@ and g̃,
,. as nonequi-

librium deviations from such local equilibrium caused
subgrid scale eddies. Moreover, if we argue thatg̃,

,. can
also be considered a~linear! nonequilibrium deviation, then
we can formally express them, without loss of generality,

dg̃,52Dv~ f ,2g̃,
!!. ~12!

Substituting this into Eq.~10!, we arrive at the coarse
grained BGK equation,

S, f ,52ṽ~ f ,2g̃,
!!. ~13!

Under these assumptions, the coarse grained BGK equa
has the same form as that of the original BGK equation
cept with a redefined relaxation parameter~which may not
necessarily be a simple scalar!. Therefore, dynamic invari-
ance at the kinetic level is more plausible. Apparently, su
invariance usually does not and need not translate int
form invariance at the hydrodynamic level. Since the BG
equation reduces to the Navier-Stokes equations in the
Knudsen limit, it is clear that the new relaxation implies
modified viscosity at thek→0 limit. However, the hydrody-
namic properties at some intermediate scales can bec
more interesting and are likely to involve not just simp
eddy-damping effects.
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The projected equilibrium has the following explicit form

g̃,5 f 0$d~k!1Aiui
,1Bi j ~ui

,* uj
,12ui

,* uj
.1ui

.* uj
.!%,

~14!

where Ai5v i /T, and Bi j 5Gi jkl /2T(vkv l /T2dkl), with
Gi jkl given by Eq.~9!. In the above,ui

,* uj
, is an abbrevia-

tion for *dpui
,(p)uj

,(k2p). A similar definition is used for
the other terms in Eq.~14!. According to Eq.~11!, the goal
of our RG procedure is to find at each iteration of the R
analysis a sensible subgrid scale averaged expressio

^dg̃,& in terms of the resolvable componentf , alone. Due
to Eq. ~10!, this requires solving the small scale dynami
that is due to the resolvable-subgrid and subgrid-subg
eddy interactions. We now make the conventional assu
tion that the flow carried by the subgrid componentu.

5*ddvvf . splits into a high-amplitude zero-averaging com
ponentu.0 plus a low amplitude, nonzero averaging comp
nentu.1. The former is associated with a background flu
tuation driven by a random force@3,9#, and the latter is
completely controlled by the regular motion of the large e
dies. Much as in Navier-Stokes analysis, the subgrid av
aged properties of these velocity fields are described as
lows:

^ui
,&5ui

, , ^ui
.0&50, ^ui

.1&5ui
. ,

^ui
.0~k!uj

.0~k8!&5Pi j ~k!Q~k!d~k1k8!, ~15!

wherePi j (k)[d i j 2kikj /k2 is the projection operator. Using
these properties into the definition of^dg̃,&, we readily ob-
tain

^dg̃,&52 f 0Bi j $ui
,* ^uj

.1&1^ui
.0* uj

.1&%. ~16!

Now we express the subgrid components via their kine
definition, as velocity integrals of the small scale distributi
function, namelyrui

.15*ddvv i f .
1 , where f .

1 is by defini-
tion the departure from the zeroth order subgrid local eq
librium,

g̃.
0 5 f 0$Aiui

.01Bi j ~ui
,* uj

,12ui
,* uj

.01ui
.0* uj

.0!%.

Though not necessary in a more systematic derivation,
the main purpose of this Rapid Communication we only co
sider the time variations in the subgrid mode that are sh
enough, so that we can ignore the time derivative in
subgrid component equation,ikS•v'2(k•v)2. We then re-
place this by its ensemble averaged value and invoke i
ropy, (k•v)2→^(k•v)2&→Tk2, then obtain to the leading
order a detailed balance relation as the solution for the sm
scale BGK,

Tk2f .
1 52 ivk•vg̃.

0 . ~17!

Therefore, we havef .5(12 ivk•v)g̃.
0 1d f . , whered f .

represents other nonequilibrium fluctuations that do not
count for any hydrodynamic modes. Inserting this express
into the above velocity moment relation and using proper
~15!, we obtain
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^ui
.1~k!&'

2 iv

2Tk2
Ai jk~k!E dpuj

,~p!u,
k~k2p!. ~18!

Similarly, we can compute the second order moment co
lation

^ui
.0~p!uj

.1~k2p!&5
2 iv

2Tk2
Ajkl~k2p!uk

,~k!Pil ~p!Q~p!.

~19!

Here, Ai jk(k) is the familiar coupling kernel appearing i
incompressible Navier-Stokes equations,Ai jk(k)5kj Pik(k)
1kkPi j (k) andQ(p) is defined in Eq.~15!. Plugging these
expressions in Eq.~16!, we arrive at a closed form for^dg̃,&
in terms of the resolvable components and averaged po
spectrum of the subgrid components. The correspond
eddy viscosity is readily evaluated by either computing
plicitly the contribution of̂ dg̃,& to the momentum flux ten
sor in Eq.~5!, or simply by inserting it into the definition o
the effective relaxationDv. Either way, the final result read

ne~k!5
Ai jk~k!

k2 E
.

dp
Aklm~k2p!

n~k2p!2
Pjl ~p!Pim~k!Q~p!,

~20!

wheren5T/v is the molecular viscosity. This yields an e
fective viscosity due to scales around the cutoffKs and rep-
e-

er
g
-

resents the main result of the present Rapid Communicat
Note the above expression may involve time integration
we had not neglected the time derivative term in the subs
BGK. As in other RG procedures, we can carry on the ana
sis to eliminate the next wave-number shell. By so doing,
only change in expression~20! is to replacen by ne(k
2p). The final result, though obtained via crude assum
tions, is similar to those given by the RG derivations v
Navier-Stokes representation@3,9,12#; particularly, it is iden-
tical ~up to a constant factor! to that derived by Zhou and
Vahala@13#.

Our Boltzmann BGK-RG analysis builds upon two ma
assumptions:~i! the statistical properties of subgrid scale
and ~ii ! the low Knudsen closure. Item~i! is the same as in
isotropic Navier-Stokes turbulence. On the contrary, po
~ii ! is peculiar to the present kinetic derivation and it has,
believe, the advantage of offering potentially new physi
insights as well as alternative mathematical treatments. N
ertheless, we wish to point out that the low Knudsen assu
tion is not entirely rigorous, since it might become questio
able in the infrared region where adiabatic enslaving to
local equilibrium is not quite accurate. More careful deriv
tions based on systematic expansion methods are cert
warranted. This leaves room for future work which m
discover additional physics besides the Navier-Sto
formulation.
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